Role of the Atmospheric Moisture Budget in Defining the Precipitation Seasonality of the Great Lakes Region

Author:

Minallah Samar1,Steiner Allison L.1

Affiliation:

1. a Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan

Abstract

AbstractPrecipitation in the Great Lakes region has a distinct seasonal cycle that peaks in early summer, followed by a decline in August and a secondary peak in September. This seasonality is often not captured by models, which necessitates understanding of the driving mechanisms to ascertain the model biases. This study analyzes the atmospheric moisture budget using reanalysis datasets to assess the role of regional evapotranspiration and moisture influx from remote origins in defining the precipitation seasonality, and to understand how the Great Lakes modulate spatial patterns and magnitudes of these components. Specifically, the land–water thermal contrast yields large seasonal variations in the evaporative fluxes and creates distinctive localized spatial patterns of moisture flux divergence. We find considerable month-to-month variations in both evapotranspiration and the net moisture transport through the boundaries, where they play a cooperative (contrasting) role in amplifying (dampening) the moisture content available for precipitation and total precipitable water. Our seasonal analysis suggests that the misrepresentation of the budget quantities in models, for example, in simulation of moisture transport processes and parameterization schemes, can result in an anomalous precipitation behavior and, in some cases, violation of the atmospheric moisture mass balance, resulting in large residual magnitudes. We also identify conspicuous differences in the representation of moisture budget components in the various reanalyses, which can alter their representation of the regional hydroclimates.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3