Charge in Long-Lasting El Niño Events by Convection-Induced Wind Anomalies over the Western Pacific in Boreal Spring

Author:

Li Zhenning1,Yang Song2,Hu Xiaoming3,Dong Wenjie4,He Bian5

Affiliation:

1. School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, China

2. School of Atmospheric Sciences, and Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, and Institute of Earth Climate and Environment System, Sun Yat-sen University, Guangzhou, China

3. School of Atmospheric Sciences, and Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, China

4. School of Atmospheric Sciences, and Guangdong, Hong Kong and Macao Joint Laboratory for Tropical Oceanic-Atmospheric System Science, Sun Yat-sen University, Guangzhou, China

5. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Abstract

Abstract In this study, El Niño events are classified as long El Niño (LE) events and short El Niño (SE) events based on their durations, and the characteristics of the early stages of these events are investigated. Results indicate that LE events tend to start earlier compared to SE events, initiating in boreal spring and peaking in winter. Their early occurrence is attributed to the western equatorial Pacific (WEP) sea surface wind anomalies that benefit the eastward propagation of warm water by forcing the downwelling Kelvin waves. It is also found that the wind anomalies are potentially induced by the convection anomalies over the WEP in spring. Experiments with a fully coupled climate model forced by convection heating anomalies over the WEP show that El Niño events become stronger and longer after introducing anomalous convection heating. The convection anomalies induce an extensive anomalous westerly belt over the WEP, which charges El Niño by eastward-propagating Kelvin waves. Moreover, induced by the anomalously northward-shifted ITCZ heating and the suppressed heating over the Maritime Continent, the equatorially asymmetric westerly belt reduces the meridional shear of mean easterly wind in the lower latitudes, which maintains an anomalous equatorward Sverdrup transport and in turn prolongs the persistence of El Niño events. A case study of the 2015/16 super El Niño and a regression study by using a rainfall index in critical regions support the above results.

Funder

National Key Research Program of China

National Natural Science Foundation of China

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3