Impact of Regional Atmospheric Cloud Radiative Changes on Shifts of the Extratropical Jet Stream in Response to Global Warming

Author:

Voigt Aiko1,Shaw Tiffany A.2

Affiliation:

1. Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

2. Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois

Abstract

Abstract Climate models robustly project that global warming will lead to a poleward shift of the annual-mean zonal-mean extratropical jet streams. The magnitude of such shifts remains uncertain, however, and recent work has indicated a potentially important role of cloud radiative interactions. The model spread found in realistic simulations with interactive sea surface temperatures (SSTs) is captured in aquaplanet simulations with prescribed SSTs, because of which the latter setup is adapted here to study the impact of regional atmospheric cloud radiative changes on the jet position. Simulations with two CMIP5 models and prescribed regional cloud changes show that the rise of tropical high-level clouds and the upward and poleward movement of midlatitude high-level clouds lead to poleward jet shifts. High-latitude low-level cloud changes shift the jet poleward in one model but not in the other. The impact of clouds on the jet operates via the atmospheric radiative forcing that is created by the cloud changes and is qualitatively reproduced in a dry model, although the latter is too sensitive because of its simplified treatment of diabatic processes. The 10-model CMIP5 aquaplanet ensemble of global warming exhibits correlations between jet shifts, regional temperature changes, and regional cloud changes that are consistent with the prescribed cloud simulations. This provides evidence that the atmospheric radiative forcing from tropical and midlatitude high-level cloud changes contributes to model uncertainty in future jet shifts, in addition to the surface radiative forcing from extratropical cloud changes highlighted by previous studies.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3