Affiliation:
1. Uni Research Climate, Bjerknes Centre for Climate Research, Bergen, Norway
Abstract
Dynamical subseasonal-to-seasonal (S2S) weather forecasting has made strides in recent years, thanks partly to better initialization and representation of physical variables in models. For instance, realistic initializations of snow and soil moisture in models yield enhanced temperature predictability on S2S time scales. Snow depth and soil moisture also mediate month-to-month persistence of near-surface air temperature. Here the role of snow depth as predictor of temperature one month ahead in the Northern Hemisphere is examined via two causal pathways. Through the first pathway, snow depth anomalies in month 1 persist into month 2 and are then linked to temperature anomalies through snow–temperature feedback mechanisms. The first pathway is active from fall to summer, and its effect peaks before the melting season: in winter in the low latitudes, in spring in the midlatitudes, and in early summer in the high latitudes. The second pathway, where snow depth anomalies in month 1 lead to soil moisture anomalies in month 2 (through melting), which are then linked to temperature anomalies in month 2 through soil moisture–temperature feedbacks, is most active in spring and summer. The effect of the second pathway peaks during the melting season, namely, later in the year than the first pathway. The latitudes of the highest mediated effect through both pathways follow a seasonal cycle, shifting northward along with the seasonal insolation cycle. In keeping with this seasonal cycle, the highest snow depth mediation occurs to the north and the highest soil moisture mediation to the south of the latitudes with the highest overall temperature predictability from snow depth.
Publisher
American Meteorological Society
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献