Role of the Tian Shan Mountains and Pamir Plateau in Increasing Spatiotemporal Differentiation of Precipitation over Interior Asia

Author:

Sha Yingying1,Shi Zhengguo123,Liu Xiaodong12,An Zhisheng1,Li Xinzhou12,Chang Hong1

Affiliation:

1. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, China

2. CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China

3. Open Studio for Oceanic-Continental Climate and Environment Changes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China

Abstract

Numerical simulations were conducted to determine the impact of the Tian Shan Mountains and Pamir Plateau on arid conditions over interior Asia. These topographies are crucial for the differentiation of the precipitation seasonality among the subregions in the west, east, and north of the Tian Shan Mountains and Pamir Plateau, namely, arid central Asia, the Tarim basin, and the northern plains. Before the uplift of the Tian Shan Mountains and Pamir Plateau, the precipitation seasonality over the east arid subregion was consistent with that over the west arid subregion, with maximum rainfall in spring and winter and minimum rainfall in summer. After the uplift of the Tian Shan Mountains and Pamir Plateau, the original precipitation seasonality in the west was strengthened. As the precipitation in the east arid subregion increased in summer but decreased in winter and spring, the precipitation seasonality in the east changed to peak in summer, while the precipitation in the north arid subregion showed the opposite change. The precipitation alteration corresponded well with the change of vertical motion. With the modulation of atmospheric stationary waves, the remote East Asian monsoon was also impacted. Though enhanced southerly wind blew over East Asia, the monsoon precipitation over the east coast of China and subtropical western Pacific Ocean was significantly reduced as an anticyclonic circulation appeared. The Tian Shan Mountains and Pamir Plateau also contributed to the intensification of the East Asian winter monsoon.

Funder

Strategic Priority Research Program of Chinese Academy of Sciences

national key research and development program of China

National Natural Science Foundation of China

Chinese Academy of Sciences

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Innovative Talents Promotion Plan of Shaanxi

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3