Climate Impact of Cloud Water Inhomogeneity through Microphysical Processes in a Global Climate Model

Author:

Hotta Haruka1,Suzuki Kentaroh1,Goto Daisuke2,Lebsock Matthew3

Affiliation:

1. Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan

2. National Institute for Environmental Studies, Tsukuba, Japan

3. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Abstract

AbstractThis study investigates how subgrid cloud water inhomogeneity within a grid spacing of a general circulation model (GCM) links to the global climate through precipitation processes. The effect of the cloud inhomogeneity on autoconversion rate is incorporated into the GCM as an enhancement factor using a prognostic cloud water probability density function (PDF), which is assumed to be a truncated skewed-triangle distribution based on the total water PDF originally implemented. The PDF assumption and the factor are evaluated against those obtained by global satellite observations and simulated by a global cloud-system-resolving model (GCRM). Results show that the factor implemented exerts latitudinal variations, with higher values at low latitudes, qualitatively consistent with satellite observations and the GCRM. The GCM thus validated for the subgrid cloud inhomogeneity is then used to investigate how the characteristics of the enhancement factor affect global climate through sensitivity experiments with and without the factor incorporated. The latitudinal variation of the factor is found to have a systematic impact that reduces the cloud water and the solar reflection at low latitudes in the manner that helps mitigate the too-reflective cloud bias common among GCMs over the tropical oceans. Due to the limitation of the factor arising from the PDF assumption, however, no significant impact is found in the warm rain formation process. Finally, it is shown that the functional form for the PDF in a GCM is crucial to properly characterize the observed cloud water inhomogeneity and its relationship with precipitation.

Funder

Ministry of Education, Culture, Sports, Science and Technology (JP) Tougou program

JAXA GCOM-C

JAXA EarthCARE

HPCI

Japan Society for the Promotion of Science

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3