Potential Predictability during a Madden–Julian Oscillation Event

Author:

Jones Charles1,Dudhia Jimy2

Affiliation:

1. Department of Geography, and Earth Research Institute, University of California, Santa Barbara, Santa Barbara, California

2. National Center for Atmospheric Research, Boulder, Colorado

Abstract

The Madden–Julian oscillation (MJO) is an important source of predictability. The boreal 2004/05 winter is used as a case study to conduct predictability experiments with the Weather Research and Forecasting (WRF) Model. That winter season was characterized by an MJO event, weak El Niño, strong North Atlantic Oscillation, and extremely wet conditions over the contiguous United States (CONUS). The issues investigated are as follows: 1) growth of forecast errors in the tropics relative to the extratropics, 2) propagation of forecast errors from the tropics to the extratropics, 3) forecast error growth on spatial scales associated with MJO and non-MJO variability, and 4) the relative importance of MJO and non-MJO tropical variability on predictability of precipitation over CONUS. Root-mean-square errors in forecasts of normalized eddy kinetic energy (NEKE) (200 hPa) show that errors in initial conditions in the tropics grow faster than in the extratropics. Potential predictability extends out to about 4 days in the tropics and 9 days in the extratropics. Forecast errors in the tropics quickly propagate to the extratropics, as demonstrated by experiments in which initial conditions are only perturbed in the tropics. Forecast errors in NEKE (200 hPa) on scales related to the MJO grow slower than in non-MJO variability over localized areas in the tropics and short lead times. Potential predictability of precipitation extends to 1–5 days over most of CONUS but to longer leads (7–12 days) over regions with orographic precipitation in California. Errors in initial conditions on small scales relative to the MJO quickly grow, propagate to the extratropics, and degrade forecast skill of precipitation.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3