Historical Evaluation and Future Prediction of Eastern North American and Western Atlantic Extratropical Cyclones in the CMIP5 Models during the Cool Season

Author:

Colle Brian A.1,Zhang Zhenhai1,Lombardo Kelly A.1,Chang Edmund1,Liu Ping1,Zhang Minghua1

Affiliation:

1. School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York

Abstract

Abstract Extratropical cyclone track density, genesis frequency, deepening rate, and maximum intensity distributions over eastern North America and the western North Atlantic were analyzed for 15 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) for the historical period (1979–2004) and three future periods (2009–38, 2039–68, and 2069–98). The cyclones were identified using an automated tracking algorithm applied to sea level pressure every 6 h. The CMIP5 results for the historical period were evaluated using the Climate Forecast System Reanalysis (CFSR). The CMIP5 models were ranked given their track density, intensity, and overall performance for the historical period. It was found that six of the top seven CMIP5 models with the highest spatial resolution were ranked the best overall. These models had less underprediction of cyclone track density, more realistic distribution of intense cyclones along the U.S. East Coast, and more realistic cyclogenesis and deepening rates. The best seven models were used to determine projected future changes in cyclones, which included a 10%–30% decrease in cyclone track density and weakening of cyclones over the western Atlantic storm track, while in contrast there is a 10%–20% increase in cyclone track density over the eastern United States, including 10%–40% more intense (<980 hPa) cyclones and 20%–40% more rapid deepening rates just inland of the U.S. East Coast. Some of the reasons for these CMIP5 model differences were explored for the selected models based on model generated Eady growth rate, upper-level jet, surface baroclinicity, and precipitation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3