Investigating the Role of Ocean–Atmosphere Coupling in the North Pacific Ocean

Author:

Smirnov Dimitry1,Newman Matthew1,Alexander Michael A.2

Affiliation:

1. CIRES, University of Colorado at Boulder, and NOAA/Earth System Research Laboratory, Boulder, Colorado

2. NOAA/Earth System Research Laboratory, Boulder, Colorado

Abstract

Abstract Air–sea interaction over the North Pacific is diagnosed using a simple, local coupled autoregressive model constructed from observed 7-day running-mean sea surface temperature (SST) and 2-m air temperature TA anomalies during the extended winter from the 1° × 1° objectively analyzed air–sea fluxes (OAFlux) dataset. Though the model is constructed from 1-week lag statistics, it successfully reproduces the observed anomaly evolution through lead times of 90 days, allowing an estimation of the relative roles of coupling and internal atmospheric and oceanic forcing upon North Pacific SSTs. It is found that east of the date line, SST variability is maintained by, but has little effect on, TA variability. However, in the Kuroshio–Oyashio confluence and extension region, about half of the SST variability is independent of TA, driven instead by SST noise forcing internal to the ocean. Including surface zonal winds in the analysis does not alter this conclusion, suggesting TA adequately represents the atmosphere. Repeating the analysis with the output of two control simulations from a fully coupled global climate model (GCM) differing only in their ocean resolution yields qualitatively similar results. However, for the simulation employing the coarse-resolution (1°) ocean model, all SST variability depends upon TA, apparently caused by a near absence of ocean-induced noise forcing. Collectively, these results imply that a strong contribution from internal oceanic forcing drives SST variability in the Kuroshio–Oyashio region, which may be used as a justification for atmospheric GCM experiments forced with SST anomalies in that region alone. This conclusion is unaffected by increasing the dimensionality of the model to allow for intrabasin interaction.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference76 articles.

1. Midlatitude atmosphere–ocean interaction during El Niño. Part I: The North Pacific Ocean;Alexander;J. Climate,1992

2. Extratropical air-sea interaction, SST variability and the Pacific decadal oscillation;Alexander,2010

3. A mechanism for the recurrence of wintertime midlatitude SST anomalies;Alexander;J. Phys. Oceanogr.,1995

4. Surface flux variability over the North Pacific and North Atlantic Oceans;Alexander;J. Climate,1997

5. Processes that influence sea surface temperature and ocean mixed layer depth variability in a coupled model;Alexander;J. Geophys. Res.,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3