Increased Surface Ocean Heating by Colored Detrital Matter (CDM) Linked to Greater Northern Hemisphere Ice Formation in the GFDL CM2Mc ESM

Author:

Kim Grace E.1,Gnanadesikan Anand1,Pradal Marie-Aude1

Affiliation:

1. Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland

Abstract

Abstract Recent observations of Arctic Ocean optical properties have found that colored dissolved organic matter (CDOM) is of primary importance in determining the nonwater absorption coefficient of light in this region. Although CDOM is an important optical constituent in the Arctic Ocean, it is not included in most of the current generation of Earth system models (ESMs). In this study, model runs were conducted with and without light attenuation by colored detrital matter (CDM), the combined optical contribution of CDOM and nonalgal particles. The fully coupled GFDL CM2 with Modular Ocean Model version 4p1 (MOM4p1) at coarse resolution (CM2Mc) ESM was used to examine the differences in heating and ice formation in the high northern latitudes. The annual cycle of sea surface temperature (SST) is amplified in the model run where the optical attenuation by CDM is included. Annually averaged integrated ice mass is 5% greater and total ice extent is 6% greater owing to colder wintertime SSTs. Differences in ocean heating (i.e., temperature tendency) between the two model runs are well represented by the combined changes in heating by penetrating shortwave radiation, mixing, and surface heat fluxes in the upper 100 m. Shortwave radiation is attenuated closer to the surface, which reduces heating below 10 m during summer months. Mixing entrains colder waters into the mixed layer during the autumn and winter months. Increased cloudiness and ice thickness in the model run with CDM reduces incoming shortwave radiation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3