Quantifying the Contribution of Different Cloud Types to the Radiation Budget in Southern West Africa

Author:

Hill Peter G.1,Allan Richard P.2,Chiu J. Christine3,Bodas-Salcedo Alejandro4,Knippertz Peter5

Affiliation:

1. University of Reading, Reading, United Kingdom

2. University of Reading, and National Centre for Earth Observation, Reading, United Kingdom

3. University of Reading, Reading, United Kingdom, and Colorado State University, Fort Collins, Colorado

4. Met Office Hadley Centre, Exeter, United Kingdom

5. Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany

Abstract

The contribution of cloud to the radiation budget of southern West Africa (SWA) is poorly understood and yet it is important for understanding regional monsoon evolution and for evaluating and improving climate models, which have large biases in this region. Radiative transfer calculations applied to atmospheric profiles obtained from the CERES– CloudSat–CALIPSO–MODIS (CCCM) dataset are used to investigate the effects of 12 different cloud types (defined by their vertical structure) on the regional energy budget of SWA (5°–10°N, 8°W–8°E) during June–September. We show that the large regional mean cloud radiative effect in SWA is due to nonnegligible contributions from many different cloud types; eight cloud types have a cloud fraction larger than 5% and contribute at least 5% of the regional mean shortwave cloud radiative effect at the top of the atmosphere. Low clouds, which are poorly observed by passive satellite measurements, were found to cause net radiative cooling of the atmosphere, which reduces the heating from other cloud types by approximately 10%. The sensitivity of the radiation budget to underestimating low-cloud cover is also investigated. The radiative effect of missing low cloud is found to be up to approximately −25 W m−2 for upwelling shortwave irradiance at the top of the atmosphere and 35 W m−2 for downwelling shortwave irradiance at the surface.

Funder

FP7 Environment

Joint UK BEIS/DefraMet Office Hadley Centre Climate Programme

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3