Testing for trends on a regional scale: Beyond local significance

Author:

Huth Radan123,Dubrovský Martin23

Affiliation:

1. 1 Dept. of Physical Geography and Geoecology, Faculty of Science, Charles Unversity, Prague, Czechia

2. 2 Institute of Atmospheric Physics, Czech Academy of Sciences, Prague, Czechia

3. 3 Global Change Research Institute, Czech Academy of Sciences, Brno, Czechia

Abstract

AbstractStudies detecting trends in climate elements typically concentrate on their local significance, ignoring the question on whether the significant local trends may or may not have occurred due to chance. The present paper fills this gap by examining several approaches to detecting statistical significance of trends defined on a grid, that is on a regional scale. To this end, we introduce a novel simple procedure of significance testing, which is based on counting signs of local trends (sign test), and compare it with five other approaches to testing collective significance of trends (counting, extended Mann-Kendall, Walker, fdr, and regression tests). Synthetic data are used to construct null distributions of trend statistics, to determine critical values of the tests, and to assess the performance of tests in terms of type II error. For lower values of spatial and temporal autocorrelations, the sign test and extended Mann-Kendall test perform slightly better than the counting test; these three tests outperform Walker, fdr, and regression tests by quite a wide margin. For high autocorrelations, which is a more realistic case, all tests become similar in their performance, with the exception of the regression test, which performs somewhat worse. Some tests cannot be used under specific conditions because of their construction: Walker and fdr tests for high temporal autocorrelations; sign test under high spatial autocorrelations.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3