The Leading, Interdecadal Eigenmode of the Atlantic Meridional Overturning Circulation in a Realistic Ocean Model

Author:

Sévellec Florian1,Fedorov Alexey V.2

Affiliation:

1. Ocean and Earth Science, National Oceanographic Centre Southampton, University of Southampton, Southampton, United Kingdom

2. Department of Geology and Geophysics, Yale University, New Haven, Connecticut

Abstract

Abstract Variations in the strength of the Atlantic meridional overturning circulation (AMOC) are a major potential source of decadal and longer climate variability in the Atlantic. This study analyzes continuous integrations of tangent linear and adjoint versions of an ocean general circulation model [Océan Parallélisé (OPA)] and rigorously shows the existence of a weakly damped oscillatory eigenmode of the AMOC centered in the North Atlantic Ocean and controlled solely by linearized ocean dynamics. In this particular GCM, the mode period is roughly 24 years, its e-folding decay time scale is 40 years, and it is the least-damped oscillatory mode in the system. Its mechanism is related to the westward propagation of large-scale temperature anomalies in the northern Atlantic in the latitudinal band between 30° and 60°N. The westward propagation results from a competition among mean eastward zonal advection, equivalent anomalous westward advection caused by the mean meridional temperature gradient, and westward propagation typical of long baroclinic Rossby waves. The zonal structure of temperature anomalies alternates between a dipole (corresponding to an anomalous AMOC) and anomalies of one sign (yielding no changes in the AMOC). Further, it is shown that the system is nonnormal, which implies that the structure of the least-damped eigenmode of the tangent linear model is different from that of the adjoint model. The “adjoint” mode describes the sensitivity of the system (i.e., it gives the most efficient patterns for exciting the leading eigenmode). An idealized model is formulated to highlight the role of the background meridional temperature gradient in the North Atlantic for the mode mechanism and the system nonnormality.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3