An Objective Satellite-Based Tropical Cyclone Size Climatology

Author:

Knaff John A.1,Longmore Scott P.2,Molenar Debra A.1

Affiliation:

1. Regional and Mesoscale Meteorology Branch, NOAA/NESDIS, Fort Collins, Colorado

2. Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Abstract

Abstract Storm-centered infrared (IR) imagery of tropical cyclones (TCs) is related to the 850-hPa mean tangential wind at a radius of 500 km (V500) calculated from 6-hourly global numerical analyses for North Atlantic and eastern North Pacific TCs for 1995–2011. V500 estimates are scaled using the climatological vortex decay rate beyond 500 km to estimate the radius of 5 kt (1 kt = 0.514 m s−1) winds (R5) or TC size. A much larger historical record of TC-centered IR imagery (1978–2011) is then used to estimate TC sizes and form a global TC size climatology. The basin-specific distributions of TC size reveal that, among other things, the eastern North Pacific TC basins have the smallest while western North Pacific have the largest TC size distributions. The life cycle of TC sizes with respect to maximum intensity shows that TC growth characteristics are different among the individual TC basins, with the North Atlantic composites showing continued growth after maximum intensity. Small TCs are generally located at lower latitudes, westward steering, and preferred in seasons when environmental low-level vorticity is suppressed. Large TCs are generally located at higher latitudes, poleward steering, and preferred in enhanced low-level vorticity environments. Postmaximum intensity growth of TCs occurs in regions associated with enhanced baroclinicity and TC recurvature, while those that do not grow much are associated with west movement, erratic storm tracks, and landfall at or near the time of maximum intensity. With respect to climate change, no significant long-term trends are found in the dataset of TC size.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference58 articles.

1. Mame Taifu or midget typhoon (small storms of typhoon intensity);Arakawa;Geophys. Mag.,1952

2. Very large and very small typhoons of the western North Pacific Ocean;Brand;J. Meteor. Soc. Japan,1972

3. Changes in the characteristics of typhoons crossing the Philippines;Brand;J. Appl. Meteor.,1973

4. An observational study of extratropical storms evolved from tropical cyclones in the western North Pacific;Brand;J. Meteor. Soc. Japan,1979

5. Low latitude cyclones;Brunt;Aust. Meteor. Mag.,1969

Cited by 177 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3