Can the Salt-Advection Feedback Be Detected in Internal Variability of the Atlantic Meridional Overturning Circulation?

Author:

Cheng Wei12ORCID,Weijer Wilbert3,Kim Who M.4,Danabasoglu Gokhan4,Yeager Steve G.4,Gent Peter R.4,Zhang Dongxiao12,Chiang John C. H.5,Zhang Jiaxu3

Affiliation:

1. Joint Institute for the Study of Atmosphere and Ocean, University of Washington, Seattle, Washington

2. Pacific Marine Environmental Laboratory, NOAA, Seattle, Washington

3. Los Alamos National Laboratory, Los Alamos, New Mexico

4. National Center for Atmospheric Research, Boulder, Colorado

5. University of California, Berkeley, Berkeley, California

Abstract

Evidence for the assumptions of the salt-advection feedback in box models is sought by studying the Atlantic meridional overturning circulation (AMOC) internal variability in the long preindustrial control runs of two Earth system models. The first assumption is that AMOC strength is proportional to the meridional density difference between the North Atlantic and the Southern Oceans. The model simulations support this assumption, with the caveat that nearly all the long time-scale variability occurs in the North Atlantic density. The second assumption is that the freshwater transport variability by the overturning at the Atlantic southern boundary is controlled by the strength of AMOC. Only one of the models shows some evidence that AMOC variability at 45°N leads variability in the overturning freshwater transport at the southern boundary by about 30 years, but the other model shows no such coherence. In contrast, in both models this freshwater transport variability is dominated by local salinity variations. The third assumption is that changes in the overturning freshwater transport at the Atlantic southern boundary perturb the north–south density difference, and thus feed back on AMOC strength in the north. No evidence for this assumption is found in either model at any time scale, although this does not rule out that the salt-advection feedback may be excited by a strong enough freshwater perturbation.

Funder

Climate Program Office

U.S. Department of Energy

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3