AMO-Forced Regional Processes Affecting Summertime Precipitation Variations in the Central United States

Author:

Veres Michael C.1,Hu Qi2

Affiliation:

1. Department of Earth and Atmospheric Sciences, University of Nebraska at Lincoln, Lincoln, Nebraska

2. Department of Earth and Atmospheric Sciences, and School of Natural Resources, University of Nebraska at Lincoln, Lincoln, Nebraska

Abstract

Abstract Numerous previous studies have provided insight into the influence of the Atlantic multidecadal oscillation (AMO) on North American precipitation. However, these studies focused on large-scale processes, and additional studies are needed to gain understanding of local and regional processes that develop in different phases of the AMO and substantiate its influences on precipitation. In this study, the Weather Research and Forecasting (WRF) regional model is used to examine AMO-forced local and regional processes and how they have affected summertime precipitation variation in the central United States. While moisture transport and convergence by the Great Plains low-level jet have been recognized as necessary conditions for summer precipitation, model simulations show similar low-level moisture flux convergence in the central United States between the cold and warm phases of the AMO. However, there was a strong moistening in the lower troposphere during the AMO cold phase, making the atmosphere more unstable for convection and precipitation. The source of the moisture was found to be a strong positive surface evaporation–precipitation feedback initiated and sustained by increased relative vorticity along a frontal zone. Along the frontal zone, isentropic stretching of the upper-level atmosphere and cyclonic circulation anomalies increased the relative vorticity during the AMO cold phase, providing the dynamic support needed to release the low-level moist instability and produce the increased precipitation. These results indicate that the dynamics of the circulation in the AMO cold phase played key roles to organize regional vorticity processes that further sustained a coupling of precipitation and the surface evaporation and perpetuated the precipitation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference54 articles.

1. The Great Plains low-level jet during the warm season of 1993;Arritt;Mon. Wea. Rev.,1997

2. Atmospheric circulation associated with the Midwest floods of 1993;Bell;Bull. Amer. Meteor. Soc.,1995

3. Atlantic air-sea interaction;Bjerknes;Advances in Geophysics,1964

4. Climatology of the low level jet;Bonner;Mon. Wea. Rev.,1968

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3