Strengthened Relationship between Tropical West Pacific and Midsummer Precipitation over Northeast China after the Mid-1990s

Author:

Han Tingting1,Zhang Minghua2,Zhou Botao1,Hao Xin1,Li Shangfeng3

Affiliation:

1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, and Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

2. School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York, New York, and International Center for Climate and Environmental Sciences/IAP, Chinese Academy of Sciences, Beijing, China

3. Jilin Provincial Key Laboratory of Changbai Mountain Meteorology and Climate Change, Laboratory of Research for Middle-High Latitude Circulation Systems and East Asian Monsoon, Institute of Meteorological Sciences of Jilin Province, Changchun, China

Abstract

AbstractThe relationship between the tropical west Pacific (TWP) and East Asian summer monsoon/precipitation has been documented in previous studies. However, the stability for the signals of midsummer precipitation in the TWP sea surface temperature (SST_TWP), which is important for climate variation, has drawn little attention. This study identifies a strengthened relationship between the leading empirical orthogonal function mode (EOF1) of midsummer precipitation over Northeast China (NEC) and the SST_TWP after the mid-1990s. The EOF1 mode shows a significant positive correlation with the SST_TWP for 1996–2016, whereas the relationship is statistically insignificant for 1961–90. Further results indicate that the North Pacific multidecadal oscillation (NPMO) shifts to a positive phase after the 1990s. In the positive NPMO phase, the anomalous circulation over the northeast Pacific expands westward over the central North Pacific–Aleutian Islands region. Concurrently, the SST_TWP-associated wavelike pattern propagates northeastward from the west Pacific to the northwest Pacific and farther to the North Pacific, facilitating the poleward expansion and intensification of the SST_TWP-related circulation anomalies over the North Pacific. Therefore, the SST_TWP has an enhanced influence on NEC precipitation through the modulation of the circulation anomalies over the central North Pacific–Aleutian Islands region after the mid-1990s. Additionally, the tropical anticyclone/cyclone associated with the SST_TWP expands westward to South China, exerting an intensified impact on meridional wind anomalies along eastern China and on moisture transport over NEC. These conditions jointly contribute to the strengthened relationship between the SST_TWP and the EOF1 mode of NEC midsummer precipitation after the mid-1990s.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

China Scholarship Council

Publisher

American Meteorological Society

Subject

Atmospheric Science

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3