Effect of Atmospheric Feedbacks on the Stability of the Atlantic Meridional Overturning Circulation

Author:

Toom Matthijs den1,Dijkstra Henk A.1,Cimatoribus Andrea A.2,Drijfhout Sybren S.2

Affiliation:

1. Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands

2. Royal Netherlands Meteorological Institute, De Bilt, Netherlands

Abstract

Abstract The impact of atmospheric feedbacks on the multiple equilibria (ME) regime of the Atlantic meridional overturning circulation (MOC) is investigated using a fully implicit hybrid coupled model (HCM). The HCM consists of a global ocean model coupled to an empirical atmosphere model that is based on linear regressions of the heat, net evaporative, and momentum fluxes generated by a fully coupled climate model onto local as well as Northern Hemisphere averaged sea surface temperatures. Using numerical continuation techniques, bifurcation diagrams are constructed for the HCM with the strength of an anomalous freshwater flux as the bifurcation parameter, which allows for an efficient first-order estimation of the effect of interactive surface fluxes on the MOC stability. The different components of the atmospheric fluxes are first considered individually and then combined. Heat feedbacks act to destabilize the present-day state of the MOC and to stabilize the collapsed state, thus leaving the size of the ME regime almost unaffected. In contrast, interactive freshwater fluxes cause a destabilization of both the present-day and collapsed states of the MOC. Wind feedbacks are found to have a minor impact. The joint effect of the three interactive fluxes is to narrow the range of ME. The shift of the saddle-node bifurcation that terminates the present-day state of the ocean is further investigated by adjoint sensitivity analysis of the overturning rate to surface fluxes. It is found that heat feedbacks primarily affect the MOC stability when they change the heat fluxes over the North Atlantic subpolar gyre, whereas interactive freshwater fluxes have an effect everywhere in the Atlantic basin.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3