Dehumidification over Tropical Continents Reduces Climate Sensitivity and Inhibits Snowball Earth Initiation

Author:

Fiorella Richard P.1,Poulsen Christopher J.1

Affiliation:

1. Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan

Abstract

The enigmatic Neoproterozoic geological record suggests the potential for a fully glaciated “snowball Earth.” Low-latitude continental position has been invoked as a potential snowball Earth trigger by increasing surface albedo and decreasing atmospheric CO2 concentrations through increased silicate weathering. Herein, climate response to the reduction of total solar irradiance (TSI) and CO2 concentration is tested using four different land configurations (aquaplanet, modern, Neoproterozoic, and low-latitude supercontinent) with uniform topography in the NCAR Community Atmosphere Model, version 3.1 (CAM3.1), GCM with a mixed layer ocean. Despite a lower surface albedo at 100% TSI, the threshold for global glaciation decreases from 92% TSI in the aquaplanet configuration to 85% TSI with a low-latitude supercontinent. The difference in thresholds is principally because of the partitioning of local longwave cooling relative to poleward energy transport. Additionally, dehumidification of the troposphere over large tropical continents in CAM3.1 increases direct heating by decreasing cloud cover. Continental heating intensifies the Walker circulation, enhancing surface evaporation and moistening the marine troposphere. Topography also provides an important control on snowball Earth initiation. Modern topography in the modern continental arrangement eases snowball initiation, requiring a 2% smaller reduction in TSI relative to a modern continental arrangement without topography. In the absence of potential silicate weathering feedbacks, large tropical landmasses raise the barrier to initiation of snowball events. More generally, these simulations demonstrate the substantial influence of geography on climate sensitivity and challenge the notion that the reduced continental area early in Earth history might provide a solution to the faint young Sun paradox.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3