Affiliation:
1. Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California
2. Laboratoire de Météorologie Dynamique, CNRS, Paris, France
Abstract
Abstract
The concept of the “Asian monsoon” masks the existence of two separate summer rainfall régimes: convective storms over India, Bangladesh, and Nepal (the South Asian monsoon) and frontal rainfall over China, Japan, and the Korean Peninsula (the East Asian monsoon). In addition, the Himalayas and other orography, including the Arakan Mountains, Ghats, and Yunnan Plateau, create smaller precipitation domains with abrupt boundaries. A mode of continental precipitation variability is identified that spans both South and East Asia during July and August. Point-to-point correlations and EOF analysis with Asian Precipitation–Highly-Resolved Observational Data Integration Toward Evaluation of the Water Resources (APHRODITE), a 57-yr rain gauge record, show that a dipole between the Himalayan foothills (+) and the “monsoon zone” (central India, −) dominates July–August interannual variability in South Asia, and is also associated in East Asia with a tripole between the Yangtze corridor (+) and northern and southern China (−). July–August storm tracks, as shown by lag–lead correlation of rainfall, remain mostly constant between years and do not explain this mode. Instead, it is proposed that interannual change in the strength of moisture transport from the Bay of Bengal to the Yangtze corridor across the northern Yunnan Plateau induces widespread precipitation anomalies. Abundant moisture transport along this route requires both cyclonic monsoon circulation over India and a sufficiently warm Bay of Bengal, which coincide only in July and August. Preliminary results from the LMDZ version 5 (LMDZ5) model, run with a zoomed grid over Asia and circulation nudged toward the ECMWF reanalysis, support this hypothesis. Improved understanding of this coupling may help to project twenty-first-century precipitation changes in East and South Asia, home to over three billion people.
Publisher
American Meteorological Society
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献