Dynamical Seasonal Climate Prediction Using an Ocean–Atmosphere Coupled Climate Model Developed in Partnership between South Africa and the IRI

Author:

Beraki Asmerom F.1,DeWitt David G.2,Landman Willem A.3,Olivier Cobus1

Affiliation:

1. South African Weather Service, and Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria, South Africa

2. International Research Institute for Climate and Society, Columbia University, Palisades, New York

3. Council for Scientific and Industrial Research, Natural Resources and the Environment, and Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria, South Africa

Abstract

Abstract The recent increase in availability of high-performance computing (HPC) resources in South Africa allowed the development of an ocean–atmosphere coupled general circulation model (OAGCM). The ECHAM4.5-South African Weather Service (SAWS) Modular Oceanic Model version 3 (MOM3-SA) is the first OAGCM to be developed in Africa for seasonal climate prediction. This model employs an initialization strategy that is different from previous versions of the model that coupled the same atmosphere and ocean models. Evaluation of hindcasts performed with the model revealed that the OAGCM is successful in capturing the development and maturity of El Niño and La Niña episodes up to 8 months ahead. A model intercomparison also indicated that the ECHAM4.5-MOM3-SA has skill levels for the Niño-3.4 region SST comparable with other coupled models administered by international centers. Further analysis of the coupled model revealed that La Niña events are more skillfully discriminated than El Niño events. However, as is typical for OAGCM, the model skill was generally found to decay faster during the spring barrier. The analysis also showed that the coupled model has useful skill up to several-months lead time when predicting the equatorial Indian Ocean dipole (IOD) during the period spanning between the middle of austral spring and the start of the summer seasons, which reaches its peak in November. The weakness of the model in other seasons was mainly caused by the western segment of the dipole, which eventually contaminates the dipole mode index (DMI). The model is also able to forecast the anomalous upper air circulations, particularly in the equatorial belt, and surface air temperature in the Southern African region as opposed to precipitation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3