Climatology of Low-Level Jets and Their Impact on Rainfall over Southern China during the Early-Summer Rainy Season

Author:

Du Yu1ORCID,Chen Guixing1

Affiliation:

1. School of Atmospheric Sciences, and Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

Abstract

AbstractLow-level jets (LLJs) are a key factor regulating the early-summer rainfall over southern China. Their detailed activities and impact are examined using 21-yr ERA5 and TRMM rainfall data. The LLJs typically consist of boundary layer jets (BLJs) and synoptic-system-related LLJs (SLLJs). The BLJ is usually characterized by a southerly wind maximum at 950 hPa over the northern area of South China Sea, whereas the SLLJ features a southwesterly wind maximum at 850–700 hPa located more north on land. Meanwhile, the BLJ (SLLJ) has a maximum occurrence in April–June (May–July) and at late night (in the early morning), indicating the differences in seasonal and diurnal variations. The two types of LLJs are found to influence the rainfall distribution via terrain effects, synoptic disturbances, and moisture transport. During the BLJ events, rainfall is mainly confined to the south side of the Nanling and Wuyi Mountains and Yun-Gui Plateau (south region), whereas during the SLLJ events rainfall occurs both in the coastal region and to the north of the mountains (north region). The difference is caused by the southerly BLJ that induces strong orographic lifting on the windward side of the mountains, while the elevated SLLJ can pass over the mountains driving an additional upward motion more north. Active synoptic disturbances accompanied by SLLJs are also favorable for the rainfall in the north region. The moisture transportation by LLJs is another important factor regulating rainfall distribution. Rainfall in the south (north) region is mainly attributed to the net moisture flux in the boundary layer (more elevated layers) due to the BLJ (SLLJ).

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Young Elite Scientists Sponsorship Program by CAST

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3