Structures and Northward Propagation of the Quasi-Biweekly Oscillation in the Western North Pacific

Author:

Li Kuiping1,Yang Yang1,Feng Lin1,Yu Weidong2,Liu Shouhua3

Affiliation:

1. Center for Ocean and Climate Research, First Institute of Oceanography, Ministry of Natural Resources, and Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

2. School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai Campus, and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China

3. National Marine Data and Information Service, Tianjin, China

Abstract

AbstractThis study investigates the northward-propagating quasi-biweekly oscillation (QBWO) in the western North Pacific by examining the composite meridional structures. Using newly released reanalysis and remote sensing data, the northward propagation is understood in terms of the meridional contrasts in the planetary boundary layer (PBL) moisture and the column-integrated moist static energy (MSE). The meridional contrast in the PBL moisture, with larger values north of the convection center, is predominantly attributed to the moisture convergence associated with barotropic vorticity anomalies. A secondary contribution comes from the meridional moisture advection, for which advections by mean and perturbation winds are almost equally important. The meridional contrast in the MSE tendency, due to the recharge in the front of convection and discharge in the rear of convection, is jointly contributed by the meridional and vertical MSE advections. The meridional MSE advection mainly depends on the moisture processes particularly in the PBL, and the vertical MSE advection largely results from the advection of the mean MSE by vertical velocity anomalies, wherein the upper-troposphere ascending motion related to the stratiform heating in the rear of the convection plays the major role. In addition, partial feedback from sea surface temperature (SST) anomalies is evaluated on the basis of MSE budget analysis. SST anomalies tend to enhance the surface turbulent heat fluxes ahead of the convention center and suppress them behind the convention center, thus positively contributing approximately 20% of the meridional contrast in the MSE tendency.

Funder

National Key R&D Program of China

National Science Foundation of China

National Program on Global Change and Air-Sea Interaction

AoShan Talents Cultivation Program supported by Qingdao National Laboratory for Marine Science and Technology

China Ocean Mineral Resources Research and Development Association Program

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3