Cloud-Resolving Model Simulations and a Simple Model of an Idealized Walker Cell

Author:

Wofsy Jonathan1,Kuang Zhiming1

Affiliation:

1. Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts

Abstract

Abstract An idealized Walker cell with prescribed sea surface temperature (SST) and prescribed radiative cooling is studied using both a two-dimensional cloud-resolving model (CRM) and a simple conceptual model. In the CRM, for the same SST distribution, the width of the warm pool (area of strong precipitation) varies systematically with the magnitude of the radiative cooling, narrowing as radiative cooling is increased. The simple model is constructed to interpret these behaviors. Key aspects of the simple model include a surface wind determined from the boundary layer momentum budget, which in turn sets evaporation assuming a spatially uniform surface relative humidity, prescribed gross moist and dry stratification as a function of column water vapor and precipitation, and a gustiness enhancement on evaporation in areas of precipitation. It is found that the gustiness enhancement, likely due to mesoscale systems, creates a feedback that narrows the warm pool. This process has not been included in previous formulations of the simple model and its role is emphasized here.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference38 articles.

1. Interaction of a cumulus cloud ensemble with the large-scale environment, Part I;Arakawa;J. Atmos. Sci.,1974

2. Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific;Back;Geophys. Res. Lett.,2006

3. A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX, and arctic air-mass data sets;Betts;Quart. J. Roy. Meteor. Soc.,1986

4. How well do we understand and evaluate climate change feedback processes?;Bony;J. Climate,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3