Influences of the Pacific–Japan Teleconnection Pattern on Synoptic-Scale Variability in the Western North Pacific

Author:

Li Richard C. Y.1,Zhou Wen1,Li Tim2

Affiliation:

1. Guy Carpenter Asia-Pacific Climate Impact Center, School of Energy and Environment, City University of Hong Kong, Hong Kong, China

2. International Pacific Research Center, and Department of Meteorology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Abstract

Abstract This study investigates the influences of the Pacific–Japan (PJ) teleconnection pattern on synoptic-scale variability (SSV) in the western North Pacific (WNP). The PJ pattern exhibits salient intraseasonal variations, with a dominant peak at 10–50 days. During positive PJ phases, strengthened SSV is found in the WNP, with a much stronger and better organized synoptic wave train structure. Such a synoptic-scale wave train, however, is greatly weakened during negative PJ phases. Examination of the vertical profiles of the observational data suggests that environmental parameters are generally more (less) favorable for the growth of synoptic disturbances under positive (negative) PJ conditions. Observational results are further verified with an anomaly atmospheric general circulation model, which reveals faster (slower) growth of the synoptic-scale wave train when the environmental anomalies associated with positive (negative) PJ phases are incorporated into the summer mean state of the model. In addition, sensitivity experiments indicate that thermodynamic parameters of the planetary boundary layer (PBL) play a determining role in controlling the development of synoptic disturbances in the WNP. The increase (decrease) in background PBL moisture during positive (negative) PJ phases enhances (suppresses) perturbation moisture convergence and thus the convective heating associated with SSV, leading to strengthened (weakened) synoptic-scale activity in the WNP. Serving as potential seed disturbances for cyclogenesis, the strengthened (weakened) synoptic-scale activity may also contribute to the enhancement (suppression) in intraseasonal TC frequency during positive (negative) PJ phases.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3