Ocean Processes Affecting the Twenty-First-Century Shift in ENSO SST Variability

Author:

Guan Cong1,McPhaden Michael J.2

Affiliation:

1. Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, and University of Chinese Academy of Sciences, Beijing, China, and NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington

2. NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington

Abstract

Abstract Sea surface temperature (SST) variability associated with El Niño–Southern Oscillation (ENSO) slightly increased in the central Pacific Ocean but weakened significantly in the eastern Pacific at the beginning of twenty-first century relative to 1980–99. This decadal shift led to the greater prominence central Pacific (CP) El Niño events during the 2000s relative to the previous two decades, which were dominated by eastern Pacific (EP) events. To expand upon previous studies that have examined this shift in ENSO variability, temperature and temperature variance budgets are examined in the mixed layer of the Niño-3 (5°S–5°N, 150°–90°W) and Niño-4 (5°S–5°N, 160°E–150°W) regions from seven ocean model products spanning the period 1980–2010. This multimodel-product-based approach provides a robust assessment of dominant mechanisms that account for decadal changes in two key index regions. A temperature variance budget perspective on the role of thermocline feedbacks in the ENSO cycle based on recharge oscillator theory is also presented. As found in previous studies, thermocline and zonal advective feedbacks are the most important positive feedbacks for generating ENSO SST variance, and thermodynamic damping is the largest negative feedback for damping ENSO variance. Consistent with the shift toward more CP El Niños after 2000, thermocline feedbacks experienced a substantial reduction from 1980 to 1999 and into the 2000s, while zonal advective feedbacks were less affected. Negative feedbacks likewise weakened after 2000, particularly thermal damping in the Niño-3 region and the nonlinear sink of variance in both regions.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3