Southeast Australia Autumn Rainfall Reduction: A Climate-Change-Induced Poleward Shift of Ocean–Atmosphere Circulation

Author:

Cai Wenju1,Cowan Tim1

Affiliation:

1. CSIRO Marine and Atmospheric Research, Aspendale, Victoria, Australia

Abstract

Abstract Since the 1950s annual rainfall over southeastern Australia (SEA) has decreased considerably with a maximum decline in the austral autumn season (March–May), particularly from 1980 onward. The understanding of SEA autumn rainfall variability, the causes, and associated mechanisms for the autumn reduction remain elusive. As such, a new plausible mechanism for SEA autumn rainfall variability is described, and the dynamics for the reduction are hypothesized. First, there is no recent coherence between SEA autumn rainfall and the southern annular mode, discounting it as a possible driver of the autumn rainfall reduction. Second, weak trends in the subtropical ridge intensity cannot explain the recent autumn rainfall reduction across SEA, even though a significant relationship exists between the ridge and rainfall in April and May. With a collapse in the relationship between the autumn subtropical ridge intensity and position in recent decades, a strengthening in the influence of the postmonsoonal winds from north of Australia has emerged, as evident by a strong post-1980 coherence with SEA mean sea level pressure and rainfall. From mid to late autumn, there has been a replacement of a relative wet climate in SEA with a drier climate from northern latitudes, representing a climate shift that has contributed to the rainfall reduction. The maximum baroclinicity, as indicated by Eady growth rates, has shifted poleward. An associated poleward shift of the dominant process controlling SEA autumn rainfall has further enhanced the reduction, particularly across southern SEA. This observed change over the past few decades is consistent with a poleward shift of the ocean and atmosphere circulation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3