A Midlatitude Climatology and Interannual Variability of 200- and 500-hPa Cut-Off Lows

Author:

Muñoz Cristian1,Schultz David2,Vaughan Geraint3

Affiliation:

1. Centre for Atmospheric Science, School of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom

2. Centre for Atmospheric Science, School of Earth and Environmental Sciences, and Centre for Crisis Studies and Mitigation, University of Manchester, Manchester, United Kingdom

3. Centre for Atmospheric Science, School of Earth and Environmental Sciences, and National Centre for Atmospheric Science, University of Manchester, Manchester, United Kingdom

Abstract

AbstractA climatology of midlatitude 200- and 500-hPa cut-off low systems in the Northern and Southern Hemispheres is constructed from the NCEP–NCAR reanalysis by detecting and tracking, under one consistent method, all of the systems that persisted for more than 36 h for the 58 years of 1960–2017. This method identifies a cut-off low as a cold-core geopotential height minimum that is isolated from the main westerlies and with a strong temperature gradient on its eastern flank. The obtained spatial and seasonal distributions show preferred regions of occurrence and that within these regions there is a level-dependent seasonality of cut-off lows. Whereas 200-hPa systems are more frequent in summer and autumn, 500-hPa systems are more evenly distributed throughout the seasons. Within each region and at each level, the annual number of cut-off lows has been increasing over time, trends that are consistent with documented signals of climate change such as a weakening and poleward shift of the subtropical jets and an increase in blocking frequency. These trends explain as much as 64% of the variance in the annual number of cut-off lows. The contribution of the annular modes and El Niño–Southern Oscillation to the interannual variability of the number of cut-off lows per season in each hemisphere is also investigated. Only the Northern Hemisphere annular mode has a statistically significant negative correlation throughout all seasons that explains 18%–45% of the variance in the yearly number of Northern Hemisphere 500-hPa cut-off lows.

Funder

Comisión Nacional de Investigación Científica y Tecnológica

Natural Environment Research Council

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3