Quantifying the Non-Gaussianity of Wintertime Daily Maximum and Minimum Temperatures in the Southeast

Author:

Stefanova Lydia1,Sura Philip2,Griffin Melissa1

Affiliation:

1. Center for Ocean–Atmospheric Prediction Studies, The Florida State University, Tallahassee, Florida

2. Center for Ocean–Atmospheric Prediction Studies, and Department of Earth, Ocean and Atmosphere Science, The Florida State University, Tallahassee, Florida

Abstract

Abstract In this paper the statistics of daily maximum and minimum surface air temperature at weather stations in the southeast United States are examined as a function of the El Niño–Southern Oscillation (ENSO) and Arctic Oscillation (AO) phase. A limited number of studies address how the ENSO and/or AO affect U.S. daily—as opposed to monthly or seasonal—temperature averages. The details of the effect of the ENSO or AO on the higher-order statistics for wintertime daily minimum and maximum temperatures have not been clearly documented. Quality-controlled daily observations collected from 1960 to 2009 from 272 National Weather Service Cooperative Observing Network stations throughout Florida, Georgia, Alabama, and South and North Carolina are used to calculate the first four statistical moments of minimum and maximum daily temperature distributions. It is found that, over the U.S. Southeast, winter minimum temperatures have higher variability than maximum temperatures and La Niña winters have greater variability of both minimum and maximum temperatures. With the exception of the Florida peninsula, minimum temperatures are positively skewed, while maximum temperatures are negatively skewed. Stations in peninsular Florida exhibit negative skewness for both maximum and minimum temperatures. During the relatively warmer winters associated with either a La Niña or AO+, negative skewnesses are exacerbated and positive skewnesses are reduced. To a lesser extent, the converse is true of the El Niño and AO−. The ENSO and AO are also shown to have a statistically significant effect on the change in kurtosis of daily maximum and minimum temperatures throughout the domain.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3