Midlatitude Fronts and Variability in the Southern Hemisphere Tropical Width

Author:

Rudeva Irina1,Simmonds Ian2,Crock David3,Boschat Ghyslaine4

Affiliation:

1. School of Earth Sciences, The University of Melbourne, and Bureau of Meteorology, Melbourne, Victoria, Australia, and Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia

2. School of Earth Sciences, The University of Melbourne, Melbourne, Victoria, Australia

3. Bureau of Meteorology, Brisbane, Queensland, Australia

4. The ARC Centre of Excellence for Climate Extremes and the School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, Australia

Abstract

AbstractThis study examines the relationship between midlatitude synoptic activity and variations in the width of the tropics in the Southern Hemisphere for the period 1979–2016. The edge of the tropical belt is defined here in terms of the latitude of the subtropical ridge (STR) of sea level pressure, and eddy activity in the midlatitudes is characterized by the behavior of atmospheric fronts. It is shown that the location and intensity of the STR are significantly correlated with the number of cold fronts between 20° and 40°S and that these relationships exhibit seasonal and zonal asymmetry. The link between the STR and the number of fronts is analyzed in five sectors of the Southern Hemisphere to reveal regional differences in their behavior and relationship with the southern annular mode. Some earlier studies on the widening of the tropics suggest that such changes may be caused by a shift in the location of midlatitude eddies. Our analysis explores the connection between these on a synoptic time scale. It shows that the variability of the width of the tropics is indeed strongly influenced by changes in the midlatitude synoptic activity, and that changes in synoptic activity lead those in the edge of the tropical belt by approximately one day.

Funder

Australian Research Council

Centre of Excellence for Climate Extremes

Ministry of Education and Science of Russian Federation

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3