Estimating the Contribution of Sea Ice Response to Climate Sensitivity in a Climate Model

Author:

Caldeira Ken1,Cvijanovic Ivana2

Affiliation:

1. Department of Global Ecology, Carnegie Institution for Science, Stanford, California

2. Department of Global Ecology, Carnegie Institution for Science, Stanford, California, and Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

Abstract

Abstract The response of sea ice to climate change affects Earth’s radiative properties in ways that contribute to yet more climate change. Here, a configuration of the Community Earth System Model, version 1.0.4 (CESM 1.0.4), with a slab ocean model and a thermodynamic–dynamic sea ice model is used to investigate the overall contribution to climate sensitivity of feedbacks associated with the sea ice loss. In simulations in which sea ice is not present and ocean temperatures are allowed to fall below freezing, the climate feedback parameter averages ~1.31 W m−2 K−1; the value obtained for control simulations with active sea ice is ~1.05 W m−2 K−1, indicating that, in this configuration of CESM1.0.4, sea ice response accounts for ~20% of climate sensitivity to an imposed change in radiative forcing. In this model, the effect of sea ice response on the longwave climate feedback parameter is nearly half as important as its effect on the shortwave climate feedback parameter. Further, it is shown that the strength of the overall sea ice feedback can be related to 1) the sensitivity of sea ice area to changes in temperature and 2) the sensitivity of sea ice radiative forcing to changes in sea ice area. An alternative method of disabling sea ice response leads to similar conclusions. It is estimated that the presence of sea ice in the preindustrial control simulation has a climate effect equivalent to ~3 W m−2 of radiative forcing.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3