Benefits of Increasing the Model Resolution for the Seasonal Forecast Quality in EC-Earth

Author:

Prodhomme C.1,Batté L.2,Massonnet F.134,Davini P.56,Bellprat O.1,Guemas V.12,Doblas-Reyes F. J.137

Affiliation:

1. Barcelona Supercomputing Center, Barcelona, Spain

2. CNRM-GAME, Météo-France, Toulouse, France

3. Institut Català de Cienciès del Clima (IC3), Barcelona, Spain

4. Georges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, Université Catholique de Louvain, Louvain-La-Neuve, Belgium

5. Laboratoire de Météorologie Dynamique/IPSL, Ecole Normale Supérieure, Paris, France

6. Institute of Atmospheric Sciences and Climate, ISAC-CNR, Torino, Italy

7. Institucio Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain

Abstract

Abstract Resolution in climate models is thought to be an important factor for advancing seasonal prediction capability. To test this hypothesis, seasonal ensemble reforecasts are conducted over 1993–2009 with the European community model EC-Earth in three configurations: standard resolution (~1° and ~60 km in the ocean and atmosphere models, respectively), intermediate resolution (~0.25° and ~60 km), and high resolution (~0.25° and ~39 km), the two latter configurations being used without any specific tuning. The model systematic biases of 2-m temperature, sea surface temperature (SST), and wind speed are generally reduced. Notably, the tropical Pacific cold tongue bias is significantly reduced, the Somali upwelling is better represented, and excessive precipitation over the Indian Ocean and over the Maritime Continent is decreased. In terms of skill, tropical SSTs and precipitation are better reforecasted in the Pacific and the Indian Oceans at higher resolutions. In particular, the Indian monsoon is better predicted. Improvements are more difficult to detect at middle and high latitudes. Still, a slight improvement is found in the prediction of the winter North Atlantic Oscillation (NAO) along with a more realistic representation of atmospheric blocking. The sea ice extent bias is unchanged, but the skill of the reforecasts increases in some cases, such as in summer for the pan-Arctic sea ice. All these results emphasize the idea that the resolution increase is an essential feature for forecast system development. At the same time, resolution alone cannot tackle all the forecast system deficiencies and will have to be implemented alongside new physical improvements to significantly push the boundaries of seasonal prediction.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3