The Effect of Atmospheric Transmissivity on Model and Observational Estimates of the Sea Ice Albedo Feedback

Author:

Donohoe Aaron1,Blanchard-Wrigglesworth Ed2,Schweiger Axel3,Rasch Philip J.4

Affiliation:

1. Applied Physics Laboratory, University of Washington, Seattle, Washington

2. Department of Atmospheric Sciences, University of Washington, Seattle, Washington

3. Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, Washington

4. Pacific Northwest National Laboratory, Richland, Washington

Abstract

AbstractThe sea ice-albedo feedback (SIAF) is the product of the ice sensitivity (IS), that is, how much the surface albedo in sea ice regions changes as the planet warms, and the radiative sensitivity (RS), that is, how much the top-of-atmosphere radiation changes as the surface albedo changes. We demonstrate that the RS calculated from radiative kernels in climate models is reproduced from calculations using the “approximate partial radiative perturbation” method that uses the climatological radiative fluxes at the top of the atmosphere and the assumption that the atmosphere is isotropic to shortwave radiation. This method facilitates the comparison of RS from satellite-based estimates of climatological radiative fluxes with RS estimates across a full suite of coupled climate models and, thus, allows model evaluation of a quantity important in characterizing the climate impact of sea ice concentration changes. The satellite-based RS is within the model range of RS that differs by a factor of 2 across climate models in both the Arctic and Southern Ocean. Observed trends in Arctic sea ice are used to estimate IS, which, in conjunction with the satellite-based RS, yields an SIAF of 0.16 ± 0.04 W m−2 K−1. This Arctic SIAF estimate suggests a modest amplification of future global surface temperature change by approximately 14% relative to a climate system with no SIAF. We calculate the global albedo feedback in climate models using model-specific RS and IS and find a model mean feedback parameter of 0.37 W m−2 K−1, which is 40% larger than the IPCC AR5 estimate based on using RS calculated from radiative kernel calculations in a single climate model.

Funder

Directorate for Geosciences

Climate Program Office

US department of energy

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3