Predicting Critical Transitions in ENSO models. Part II: Spatially Dependent Models

Author:

Mukhin Dmitry1,Kondrashov Dmitri2,Loskutov Evgeny1,Gavrilov Andrey1,Feigin Alexander1,Ghil Michael3

Affiliation:

1. Institute of Applied Physics of Russian Academy of Sciences, and Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia

2. Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

3. Geosciences Department, and Laboratoire de Météorologie Dynamique, CNRS and IPSL, École Normale Supérieure, Paris, France, and Department of Atmospheric and Oceanic Sciences and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California

Abstract

Abstract The present paper is the second part of a two-part study on empirical modeling and prediction of climate variability. This paper deals with spatially distributed data, as opposed to the univariate data of Part I. The choice of a basis for effective data compression becomes of the essence. In many applications, it is the set of spatial empirical orthogonal functions that provides the uncorrelated time series of principal components (PCs) used in the learning set. In this paper, the basis of the learning set is obtained instead by applying multichannel singular-spectrum analysis to climatic time series and using the leading spatiotemporal PCs to construct a reduced stochastic model. The effectiveness of this approach is illustrated by predicting the behavior of the Jin–Neelin–Ghil (JNG) hybrid seasonally forced coupled ocean–atmosphere model of El Niño–Southern Oscillation. The JNG model produces spatially distributed and weakly nonstationary time series to which the model reduction and prediction methodology is applied. Critical transitions in the hybrid periodically forced coupled model are successfully predicted on time scales that are substantially longer than the duration of the learning sample.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3