On the Response of the Aleutian Low to Greenhouse Warming

Author:

Gan Bolan1,Wu Lixin1,Jia Fan2,Li Shujun1,Cai Wenju13,Nakamura Hisashi4,Alexander Michael A.5,Miller Arthur J.6

Affiliation:

1. Physical Oceanography Laboratory/CIMST, Ocean University of China and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

2. Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China

3. CSIRO Oceans and Atmosphere Flagship, Aspendale, Victoria, Australia

4. Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan

5. NOAA/Earth System Research Laboratory, Boulder, Colorado

6. Scripps Institution of Oceanography, La Jolla, California

Abstract

Abstract Past and future changes in the Aleutian low are investigated by using observation-based sea level pressure (SLP) datasets and CMIP5 models. It is found that the Aleutian low intensity, measured by the North Pacific Index (NPI), has significantly strengthened during the twentieth century, with the observed centennial trend double the modeled counterpart for the multimodel average of historical simulations, suggesting compound signals of anthropogenic warming and natural variability. As climate warms under the strongest future warming scenario, the climatological-mean Aleutian low will continue to intensify and expand northward, as manifested in the significant decrease (−1.3 hPa) of the multimodel-averaged NPI, which is 1.6 times its unforced internal variability, and the increase in the central area of low pressure (SLP < 999.0 hPa), which expands about 7 times that in the twentieth century. A suite of idealized experiments further demonstrates that the deepening of the Aleutian low can be driven by an El Niño–like warming of the tropical Pacific sea surface temperature (SST), with a reduction in the climatological-mean zonal SST gradient, which overshadows the dampening effect of a weakened wintertime land–ocean thermal contrast on the Aleutian low change in a warmer climate. While the projected deepening of Aleutian low on multimodel average is robust, individual model portrayals vary primarily in magnitude. Intermodel difference in surface warming amplitude over the Asian continent, which is found to explain about 31% of the variance of the NPI changes across models, has a greater contribution than that in the spatial pattern of tropical Pacific SST warming (which explains about 23%) to model uncertainty in the projection of Aleutian low intensity.

Funder

NSFC

China National Global Change Major Research Project

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3