An Assessment of Recent and Future Temperature Change over the Sichuan Basin, China, Using CMIP5 Climate Models

Author:

Bannister Daniel1,Herzog Michael2,Graf Hans-F.2,Hosking J. Scott3,Short C. Alan4

Affiliation:

1. British Antarctic Survey, and Centre for Atmospheric Sciences, University of Cambridge, Cambridge, United Kingdom

2. Centre for Atmospheric Sciences, University of Cambridge, Cambridge, United Kingdom

3. British Antarctic Survey, Cambridge, United Kingdom

4. Department of Architecture, University of Cambridge, Cambridge, United Kingdom

Abstract

The Sichuan basin is one of the most densely populated regions of China, making the area particularly vulnerable to the adverse impacts associated with future climate change. As such, climate models are important for understanding regional and local impacts of climate change and variability, like heat stress and drought. In this study, climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are validated over the Sichuan basin by evaluating how well each model can capture the phase, amplitude, and variability of the regionally observed mean, maximum, and minimum temperature between 1979 and 2005. The results reveal that the majority of the models do not capture the basic spatial pattern and observed means, trends, and probability distribution functions. In particular, mean and minimum temperatures are underestimated, especially during the winter, resulting in biases exceeding −3°C. Models that reasonably represent the complex basin topography are found to generally have lower biases overall. The five most skillful climate models with respect to the regional climate of the Sichuan basin are selected to explore twenty-first-century temperature projections for the region. Under the CMIP5 high-emission future climate change scenario, representative concentration pathway 8.5 (RCP8.5), the temperatures are projected to increase by approximately 4°C (with an average warming rate of +0.72°C decade−1), with the greatest warming located over the central plains of the Sichuan basin, by 2100. Moreover, the frequency of extreme months (where mean temperature exceeds 28°C) is shown to increase in the twenty-first century at a faster rate compared to the twentieth century.

Funder

Engineering and Physical Sciences Research Council

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3