Cross-Seasonal Influence of the December–February Southern Hemisphere Annular Mode on March–May Meridional Circulation and Precipitation

Author:

Zheng Fei1,Li Jianping2,Wang Lei3,Xie Fei2,Li Xiaofeng1

Affiliation:

1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

2. College of Global Change and Earth System Science, Beijing Normal University, and Joint Center for Global Change Studies, Beijing, China

3. Key Laboratory of Research on Marine Hazards Forecasting, National Marine Environmental Forecasting Center, Beijing, China

Abstract

Abstract New evidence suggests that interannual variability in zonal-mean meridional circulation and precipitation can be partially attributed to the Southern Hemisphere annular mode (SAM), the dominant mode of climate variability in the Southern Hemisphere (SH) extratropics. A cross-seasonal correlation exists between the December–February (DJF) SAM and March–May (MAM) zonal-mean meridional circulation and precipitation. This correlation is not confined to the SH: it also extends to the Northern Hemisphere (NH) subtropics. When the preceding DJF SAM is positive, counterclockwise, and clockwise meridional cells, accompanied by less and more precipitation, occur alternately between the SH middle latitudes and NH subtropics in MAM. In particular, less precipitation occurs in the SH middle latitudes, the SH tropics, and the NH subtropics, but more precipitation occurs in the SH subtropics and the NH tropics. A framework is built to explain the cross-seasonal impact of SAM-related SST anomalies. Evidence indicates that the DJF SAM tends to lead to dipolelike SST anomalies in the SH extratropics, which are referred to in this study as the SH ocean dipole (SOD). The DJF SOD can persist until the following MAM when it begins to modulate MAM meridional circulation and large-scale precipitation. Atmospheric general circulation model simulations further verify that MAM meridional circulation between the SH middle latitudes and the northern subtropics responds to the MAM SOD.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3