Interannual and Decadal Variability in Tropical Pacific Chlorophyll from a Statistical Reconstruction: 1958–2008

Author:

Schollaert Uz Stephanie1ORCID,Busalacchi Antonio J.1,Smith Thomas M.2,Evans Michael N.3,Brown Christopher W.2,Hackert Eric C.4

Affiliation:

1. Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

2. Center for Satellite Applications and Research, NOAA, and Cooperative Institute for Climate and Satellites, Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

3. Department of Geology and Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

4. NASA Goddard Space Flight Center, Greenbelt, Maryland

Abstract

Abstract Historical understanding of marine biological dynamics has been limited by sparse in situ observations and the fact that dedicated ocean color satellite remote sensing only began in 1997. From these observations, it has become clear that physical oceanography controls biological variability over seasonal to interannual time scales. To quantify how multidecadal, climate-scale patterns impact biological productivity, the strong correlation with sea surface temperature and sea surface height is utilized to reconstruct a retrospective 51-yr time series of surface chlorophyll, the pigment measured by ocean color satellites. The canonical correlation analysis statistical reconstruction demonstrates greatest skill away from land and within about 10° of the equator where chlorophyll variance is greatest and predominantly associated with El Niño–Southern Oscillation dynamics. Differences in chlorophyll patterns between east or central Pacific El Niño events are observed, with larger declines east of 180° for east Pacific events and west of 180° for central Pacific events. Additionally, small but significant decadal variations in chlorophyll patterns are observed corresponding to the Pacific decadal oscillation. Decadal changes in chlorophyll west of 180° are consistent with increased stratification, whereas changes between 110°–140°W may be related to long-term shoaling of the nutrient-bearing equatorial undercurrent.

Funder

National Oceanic and Atmospheric Administration

Global Science & Technology, Inc.

Goddard Space Flight Center

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3