Climate Drift in the CMIP3 Models

Author:

Sen Gupta Alexander1,Muir Les C.2,Brown Jaclyn N.2,Phipps Steven J.1,Durack Paul J.2,Monselesan Didier2,Wijffels Susan E.2

Affiliation:

1. Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia

2. Centre for Australian Weather and Climate Research, CSIRO Wealth from Oceans National Research Flagship, Hobart, Tasmania, Australia

Abstract

Abstract Even in the absence of external forcing, climate models often exhibit long-term trends that cannot be attributed to natural variability. This so-called climate drift arises for various reasons including the following: perturbations to the climate system on coupling component models together and deficiencies in model physics and numerics. When examining trends in historical or future climate simulations, it is important to know the error introduced by drift so that action can be taken where necessary. This study assesses the importance of drift for a number of climate properties at global and local scales. To illustrate this, the present paper focuses on simulated trends over the second half of the twentieth century. While drift in globally averaged surface properties is generally considerably smaller than observed and simulated twentieth-century trends, it can still introduce nontrivial errors in some models. Furthermore, errors become increasingly important at smaller scales. The direction of drift is not systematic across different models or variables, as such drift is considerably reduced in the multimodel mean. Despite drift being primarily associated with ocean adjustment, it is also apparent in atmospheric variables. For example, most models have local drift magnitudes in surface air and ocean temperatures that are typically between 15% and 35% of the twentieth-century simulation trend magnitudes for 1950–2000. Below depths of 1000–2000 m, drift dominates over any forced trend in most regions. As such steric sea level is strongly affected and for some models and regions the sea level trend direction is reversed. Thus depending on the application, drift may be negligible or may make up an important part of the simulated trend.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3