Projected Hydroclimatic Changes in Two Major River Basins at the Canadian West Coast Based on High-Resolution Regional Climate Simulations

Author:

Erler Andre R.1,Peltier W. Richard1

Affiliation:

1. Department of Physics, University of Toronto, Toronto, Ontario, Canada

Abstract

Abstract The impact of anthropogenic climate change on water resources and flood and drought risk is of great interest for impact modeling and to inform adaptation strategies. Here an analysis of hydroclimatic changes in the Fraser and Athabasca River basins in western Canada is presented, based on an ensemble of climate projections, which have been dynamically downscaled to 10-km resolution using the Weather Research and Forecasting Model in two configurations. The GCM ensemble comprises four independent integrations of the Community Earth System Model under the representative concentration pathway 8.5. Basin-integrated changes in the seasonal cycle of hydroclimatic variables, and the variability of water supply and flood and drought risk, are considered. It is found that fall and winter precipitation generally increase by 20%–30% toward the end of the century, while changes in summer precipitation are smaller and associated with high model uncertainty. Furthermore, a reduction in snowfall and an increase in evapotranspiration are projected. However, projected impacts on water resources east and west of the Rocky Mountains are quite different: in basins closer to the coast (west of the Rocky Mountains) higher temperatures lead to a transition from predominantly solid to liquid precipitation and a significantly weaker spring freshet, followed by drier summers. In the lee of the Rocky Mountains the spring freshet remains largely unaffected and in summer the increase in evapotranspiration (ET) is compensated by increasing precipitation, so that water balance changes appear to be small. It is further found that a shift in runoff seasonality near the coast may lead to significantly increased flood risk in fall.

Funder

National Science and Engineering Research Council Discovery Grant

Ontario Centres fr Excellence

Southern Ontario Smart Computing Innovation Platform

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3