Affiliation:
1. Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado
2. Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
Abstract
Air–sea coupling processes over the north Indian Ocean associated with the Indian summer monsoon intraseasonal oscillation (MISO) are investigated. Observations show that MISO convection anomalies affect underlying sea surface temperature (SST) through changes in surface shortwave radiation and surface latent heat flux. In turn, SST anomalies may also affect the MISO precipitation tendency ( dP/ dt). In particular, warm (cold) SST anomalies can contribute to increasing (decreasing) precipitation rate through enhanced (suppressed) surface convergence associated with boundary layer pressure gradients. These air–sea interaction processes are manifest in a quadrature relation between MISO precipitation and SST anomalies. A local air–sea coupling model (LACM) is formulated based on these observed physical processes. The period of the LACM is proportional to the square root of seasonal mixed layer depth H, assuming other physical parameters remain unchanged. Hence, LACM predicts a relatively short (long) MISO period over the north Indian Ocean during the May–June monsoon developing (July–August monsoon mature) phase when H is shallow (deep). This result is consistent with observed MISO characteristics. A 30-day-period oscillating external forcing is also added to the LACM, representing intraseasonal oscillations propagating from the equatorial Indian Ocean to the north Indian Ocean. It is found that resonance will occur when H is close to 25 m, which significantly enhances the MISO amplitude. This process may contribute to the higher MISO amplitude during the monsoon developing phase compared to the mature phase, which is associated with the seasonal cycle of H.
Funder
Goverment of India
National Aeronautics and Space Administration
Office of Naval Research
National Science Foundation
Publisher
American Meteorological Society
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献