Moisture and Temperature Covariability over the Southeastern Tibetan Plateau during the Past Nine Centuries

Author:

Wang Jianglin1,Yang Bao2,Ljungqvist Fredrik Charpentier3

Affiliation:

1. Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China

2. Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, and CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, China

3. Department of History, Stockholm University, and Bolin Centre for Climate Research, Stockholm University, Stockholm, and Swedish Collegium for Advanced Study, Uppsala, Sweden

Abstract

AbstractAccurate projections of moisture variability across the Tibetan Plateau (TP) are crucial for managing regional water resources, ecosystems, and agriculture in densely populated downstream regions. Our understanding of how moisture conditions respond to increasing temperatures over the TP is still limited, due to the short length of instrumental data and the limited spatial coverage of high-resolution paleoclimate proxy records in this region. This study presents a new, early-summer (May–June) self-calibrating Palmer drought severity index (scPDSI) reconstruction for the southeastern TP (SETP) covering 1135–2010 CE using 14 tree-ring records based on 1669 individual width sample series. The new reconstruction reveals that the SETP experienced the longest period of pluvial conditions in 1154–75 CE, and the longest droughts during the periods 1262–80 and 1958–76 CE. The scPDSI reconstruction shows stable and significant in-phase relationships with temperature at both high and low frequencies throughout the past 900 years. This supports the hypothesis that climatic warming may increase moisture by enhancing moisture recycling and convective precipitation over the SETP; it is also consistent with climate model projections of wetter conditions by the late twenty-first century in response to global warming.

Funder

National Key R&D Program of China

National Nature Science Foundation of China

Belmont Forum and JPI-Climate, Collaborative Research Action ‘INTEGRATE’

Swedish Research Council

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference119 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3