Comparing Cyclone Life Cycle Characteristics and Their Interannual Variability in Different Reanalyses

Author:

Tilinina Natalia1,Gulev Sergey K.1,Rudeva Irina2,Koltermann Peter3

Affiliation:

1. P. P. Shirshov Institute of Oceanology, and Lomonosov Moscow State University, Moscow, Russia

2. P. P. Shirshov Institute of Oceanology, Moscow, Russia, and University of Melbourne, Melbourne, Australia

3. Lomonosov Moscow State University, Moscow, Russia

Abstract

Abstract Characteristics of Northern Hemisphere extratropical cyclone activity were compared for five concurrent reanalyses: the NCEP–U.S. Department of Energy (DOE) reanalysis (herein NCEP–DOE), the Japanese 25-year Reanalysis Project (JRA-25), the ECMWF Interim Re-Analysis (ERA-Interim), the National Aeronautics and Space Administration's Modern-Era Retrospective Analysis for Research and Applications (NASA-MERRA), and the NCEP Climate Forecast System Reanalysis (NCEP-CFSR), for the period 1979–2010 using a single cyclone tracking algorithm. The total number of cyclones, ranging from 1400 to more than 1800 yr−1, was found to depend strongly on the spatial resolution of the respective reanalysis. The largest cyclone population was identified using NASA-MERRA data, which also showed the highest occurrence of very deep cyclones. Of the reanalyses, two (NCEP–DOE and ERA-Interim) are associated with statistically significant positive trends in the total number of cyclones from 1% to 2% decade−1. These trends result from moderate and shallow cyclones contributing to approximately 90% of the total cyclone count on average. The number of very deep cyclones (<960 hPa) in the North Atlantic increased in most reanalyses until 1990 and then declined during the last decade. In the North Pacific, the number of these events reached a peak in 2000 and then decreased during the last decade. The winter pattern is characterized by robust trends in cyclone numbers, with an enhancement of the North Atlantic storm track and a weakening of the North Pacific subtropical storm track. In the summer, there is a robust intensification of the Mediterranean storm track and a decrease in counts over the North Atlantic. Interannual variability and decadal-scale variations of the cyclone counts are highly correlated among the reanalyses, with the greatest agreement in moderate and deep cyclones.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 108 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3