Extratropical Transition of Hurricane Irene (2011) in a Changing Climate

Author:

Jung Chunyong1,Lackmann Gary M.1

Affiliation:

1. Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

Abstract

Abstract Tropical cyclones (TCs) undergoing strong extratropical transition (ET) can produce adverse societal impacts in areas that rarely experience direct TC impacts. This, in conjunction with projected environmental changes in climatological ET regions, motivates the investigation of possible future changes in ET characteristics. We utilize a small ensemble of numerical model simulations to examine how warming affects the ET of Hurricane Irene. To assess the effects of climate change, we use the pseudo-global warming method in which thermodynamic changes, derived from an ensemble of 20 CMIP5 GCMs, are applied to analyzed initial and lateral boundary conditions of model simulations. We find increased storm intensity in the future simulations, both in reduced minimum sea level pressure and strengthened 10-m wind speed. Storm-centered composites indicate a strengthening of tropospheric potential vorticity near the center of Irene, consistent with enhanced latent heat release. The results also demonstrate that Irene’s precipitation in the warmed simulations increases at a rate that exceeds Clausius–Clapeyron scaling, owing to enhanced moisture flux convergence and an additional contribution from increased surface evaporation. The duration of the transition process increased in the warmed simulations due to a weakened midtropospheric trough and reduced vertical wind shear and meridional SST gradient with a slower northward translation. These results suggest that transitioning storms may exhibit an increased ability to extend TC-like conditions poleward, and motivates additional research.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3