Asymptotic Models for Tropical Intraseasonal Oscillations and Geostrophic Balance

Author:

Stechmann Samuel N.1,Hottovy Scott2

Affiliation:

1. Department of Mathematics, and Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin

2. Department of Mathematics, United States Naval Academy, Annapolis, Maryland

Abstract

AbstractIn the tropics, rainfall is coupled with waves in the form of, for example, convectively coupled equatorial waves (CCEWs) and the Madden–Julian oscillation (MJO). In perhaps the simplest viewpoint of CCEWs, the effects of moisture and convective adjustment can predict the basic aspects of their propagation and structure: reduced propagation speeds and reduced meridional length scales. Here, a similar simple viewpoint is investigated for the MJO’s propagation and structure. To do this investigation, budget analyses of a model MJO are first presented to illustrate and motivate the asymptotic scaling assumptions. Asymptotic models are then derived for the MJO. In brief, the structure of the asymptotic MJO is described by a tropical geostrophic balance, and the slow propagation arises from the dynamics of moist static energy. To be specific, if the moist static energy has a background vertical gradient that is asymptotically weak (i.e., a moist stability that is nearly neutral), then it supports a slowly propagating wave. Beyond these main aspects, other processes also have an influence, such as eddy diffusion of moisture. In comparing the simple viewpoints of CCEWs and the MJO, one main difference is in the propagation speeds: relative to a dry wave speed of 50 m s−1, the MJO has a speed of 5 m s−1, resulting from a reduction factor of 0.1 related to moist stability, whereas the basic CCEW speed is 15 m s−1, resulting from a reduction factor of the square root of 0.1, related to the square root of the moist stability.

Funder

Division of Mathematical Sciences

Alfred P. Sloan Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3