Atmospheric Dynamics is the Largest Source of Uncertainty in Future Winter European Rainfall

Author:

Fereday David1,Chadwick Robin1,Knight Jeff1,Scaife Adam A.1

Affiliation:

1. Met Office Hadley Centre, Exeter, United Kingdom

Abstract

Abstract The IPCC Fifth Assessment Report highlighted large uncertainty in European precipitation changes in the coming century. This paper investigates the sources of intermodel differences using CMIP5 model European precipitation data. The contribution of atmospheric circulation to differences in precipitation trends is investigated by applying cluster analysis to daily mean sea level pressure (MSLP) data. The resulting classification is used to reconstruct monthly precipitation time series, thereby isolating the component of precipitation variability directly related to atmospheric circulation. Reconstructed observed precipitation and reconstructions of simulated historical and projection data are well correlated with the original precipitation series, showing that circulation variability accounts for a substantial fraction of European precipitation variability. Removing the reconstructed precipitation from the original precipitation leaves a residual component related to noncirculation effects (and any small remaining circulation effects). Intermodel spread in residual future European precipitation trends is substantially reduced compared to the spread of the original precipitation trends. Uncertainty in future atmospheric circulation accounts for more than half of the intermodel variance in twenty-first-century precipitation trends for winter months for both northern and southern Europe. Furthermore, a substantial part of this variance is related to different forced dynamical responses in different models and is therefore potentially reducible. These results highlight the importance of understanding future changes in atmospheric dynamics in achieving more robust projections of regional climate change. Finally, the possible dynamical mechanisms that may drive the future differences in regional circulation and precipitation are illustrated by examining simulated teleconnections with tropical precipitation.

Funder

Department for Environment, Food and Rural Affairs

Department for Business, Energy and Industrial Strategy

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3