Urbanization Enhanced Summertime Extreme Hourly Precipitation over the Yangtze River Delta

Author:

Jiang Xiaoling1,Luo Yali2,Zhang Da-Lin3,Wu Mengwen4

Affiliation:

1. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, and University of Chinese Academy of Sciences, Beijing, China

2. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

3. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China, and Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

4. Zhejiang Institute of Meteorological Sciences, Zhejiang Meteorological Bureau, Hangzhou, China

Abstract

AbstractAn extensive urban agglomeration has occurred over the Yangtze River delta (YRD) region of East China as a result of rapid urbanization since the middle 1990s. In this study, a 44-yr (i.e., 1975–2018) climatology of the summertime extreme hourly precipitation (EXHP; greater than the 90th percentile) over the YRD is analyzed, using historical land-use data, surface temperature, and hourly rain gauge observations, and then the relationship between rapid urbanization and EXHP changes is examined. Results show significant EXHP contrasts in diurnal variation and storm type roughly before and after middle July. That is, tropical cyclones (TCs) account for 16.4% of the total EXHP hours, 80.5% of which occur during the late summer, whereas non-TC EXHP accounts for 94.7% and 66.2% during the early and late summer, respectively. Increasing trends in occurrence frequency and amount of the non-TC and TC-induced EXHP are detected over the urban agglomeration. Statistically significant larger increasing trends in both the EXHP and surface temperature are observed at urban stations than those at the nearby rural stations. An analysis of 113 locally developed non-TC extreme rainfall events during 2011–18 summers also suggests the contribution of the urban heat island effects to the more occurrences of EXHP, especially over a band-shaped urban region where several major cities are distributed. This study reveals a significant correlation between rapid urbanization and increased EXHP during the past two decades over the YRD region. The results have important implications for understanding the impact of urbanization on EXHP changes in a warming climate.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Basic Research & Operation Funding of Chinese Academy of Meteorological Sciences

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3