Investigating Nonlinear Dependence between Climate Fields

Author:

Fischer Matt J.1

Affiliation:

1. Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales, Australia

Abstract

The Earth’s ice–ocean–atmosphere system exhibits nonlinear responses, such as the difference in the magnitude of the atmospheric response to positive or negative ocean or sea ice anomalies. Two classes of methods that have previously been used to investigate the nonlinear dependence between climate fields are kernel methods and neural network methods. In this paper, a third methodology is introduced: gradient-based kernel dimension reduction. Gradient-based kernel methods are an extension of conventional kernel methods, but gradient-based methods focus on the directional derivatives of the regression surface between two fields. Specifically, a new gradient-based method is developed here: gradient kernel canonical correlation analysis (gKCCA). In gKCCA, the canonical directions maximize the directional derivatives between the predictor field and the response field, while the canonical components of the response field maximize the correlation with a nonlinear augmentation of the predictor canonical components. Gradient-based kernel methods have several advantages: their components can be directly related to the original fields (unlike in conventional kernel methods), and the projection vectors are determined by analytical solution (unlike in neural networks). Here gKCCA is applied to the question of nonlinear coupling between high-frequency (2–3 years) and low-frequency (4–6 years) modes in the Pacific Ocean. The leading gKCCA subspace shows a significant nonlinear coupling between the low-pass and high-pass fields. The paper also shows that the results of gKCCA are robust to different levels of noise and different kernel functions.

Funder

Australian Nuclear Science and Technology Organisation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3