Impact of Synoptic Atmospheric Forcing on the Mean Ocean Circulation

Author:

Wu Yang1,Zhai Xiaoming2,Wang Zhaomin1

Affiliation:

1. Polar Climate System and Global Change Laboratory, and Earth System Modelling Center, Nanjing International Academy of Meteorological Sciences, Nanjing University of Information Science and Technology, Nanjing, China

2. Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom

Abstract

Abstract The impact of synoptic atmospheric forcing on the mean ocean circulation is investigated by comparing simulations of a global eddy-permitting ocean–sea ice model forced with and without synoptic atmospheric phenomena. Consistent with previous studies, transient atmospheric motions such as weather systems are found to contribute significantly to the time-mean wind stress and surface heat loss at mid- and high latitudes owing to the nonlinear nature of air–sea turbulent fluxes. Including synoptic atmospheric forcing in the model has led to a number of significant changes. For example, wind power input to the ocean increases by about 50%, which subsequently leads to a similar percentage increase in global eddy kinetic energy. The wind-driven subtropical gyre circulations are strengthened by about 10%–15%, whereas even greater increases in gyre strength are found in the subpolar oceans. Deep convection in the northern North Atlantic becomes significantly more vigorous, which in turn leads to an increase in the Atlantic meridional overturning circulation (AMOC) by as much as 55%. As a result of the strengthened horizontal gyre circulations and the AMOC, the maximum global northward heat transport increases by almost 50%. Results from this study show that synoptic atmospheric phenomena such as weather systems play a vital role in driving the global ocean circulation and heat transport, and therefore should be properly accounted for in paleo- and future climate studies.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3