Illustrative Analysis of Probabilistic Sea Level Rise Hazard

Author:

Thomas Matthew A.1,Lin Ting2

Affiliation:

1. Department of Civil, Construction, and Environmental Engineering, Marquette University, Milwaukee, Wisconsin

2. Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, Texas

Abstract

AbstractSea level rise results from several contributing physical processes, including ocean thermal expansion and glacier and ice sheet mass loss. Future projections of sea level remain highly uncertain due to several sources of aleatory and epistemic uncertainty. Quantifying different sources of sea level rise involves considering possible pathways of future radiative forcing and integrating models of different sea level rise processes. The probabilistic hazard analysis strategy has been proposed for combining sea level rise prediction models and climate forcing scenarios to examine sea level rise prediction uncertainty and the sources of this uncertainty. In this study we carry out an illustrative probabilistic sea level rise hazard analysis using ensembles of sea level rise predictions and emissions scenarios from the literature. This illustrative analysis allows us to estimate the probability that sea level rise will exceed a specified threshold at a given location and time and highlights how sea level rise uncertainty is sensitive to scenario inputs and sea level rise projection modeling choices. Probabilistic hazard is depicted for Earth using sea level rise hazard maps. We also demonstrate how hazard deaggregation can help us quantify the relative contributions of sea level rise sources, prediction models, and climate forcing scenarios to sea level rise hazard. The ice sheet contribution to sea level rise has a large impact on probabilistic projection of sea level rise due to the disagreements between current ice sheet models related to differences in modeling ice sheet instability.

Funder

Marquette University

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3